Why Geothermal Energy?

Renewable energy, as I have mentioned in my previous post, plays a critical role in providing stable power source. However, many people criticize renewable energy as a more expensive source if one is to look at it from a “least cost” approach alone.

In this post, we will tackle one of the most abundant renewable energy sources found in the Philippines: Geothermal energy. The Philippines after all, is the second largest producer of geothermal energy in the world, next to the United States.  Our country also has roughly about 2,600 megawatts of untapped geothermal energy resource.

Geothermal energy is perceived to be expensive due to the start up capitalization required. It is of course very risky as the first phase of any geothermal development is exploration. Construction of geothermal power plants is 2/3 higher than the construction cost of a natural gas plant, for example, and as such, exploration and building of geothermal power plants have traditionally required assistance from the government in the form of subsidies or incentives.

Geothermal energy, however, has many advantages.

One of the benefits of geothermal energy is its capacity to act as a base load plant. In fact, this is one of the most favorite points raised by those who oppose the use of renewable energy: RE products cannot act as a base load. However, the same cannot be said of geothermal energy.

Generation of geothermal power, unlike other renewable energy sources, is not subject to weather conditions such as with solar and wind. Solar power cannot provide consistent energy given that it can only produce energy during daytime and wind is subject to the wind blowing.

Geothermal energy, on the other hand, can generate power 24 hours a day at any given day of the week. In fact, the US Energy Information Administration says that geothermal power has the highest capacity factor among coal, gas and biomass and even among other renewable energy technologies given its non-reliance on environmental conditions. Of course properly done, geothermal energy can also be designed for peaking especially now that the cost of battery and other forms of storage have gone down.

Thus, the geothermal power plants baseload characteristic makes it a great substitute to fossil fuel power plants. And finding alternatives to fuel-based plants is more critical now than ever given that many coal-fired power plants are set to retire. The United States where 40 percent of the power supply is sourced from coal plants is set to retire 50 to 77 percent of the coal-fired plants by next year.

Geothermal energy plants are great alternatives to replace these ageing coal-fired plants given their base load characteristics. These plants have a relatively long life-span, too since they can last up to 50 years. The geothermal plant in California, The Geysers was built more than 40 years ago and still runs efficiently.

In fact, other countries are beginning to rely heavily on geothermal energy. Iceland, for example, sources two-thirds of its power from geothermal power plants. New Zealand, the fourth biggest producer of geothermal energy, sourced 16.2 percent of its power from geothermal sources last year.

And in Kenya, both industrial and household consumers are able to save 30 percent on power costs or roughly $24 million per month due to their use of geothermal power

So is the geothermal energy more expensive?

On the contrary, in terms of cost, geothermal energy can be a cheap energy source. For example, Mindoro, which has been suffering from power storage for many years, will soon have the first Greenfield geothermal project after the passage of EPIRA.

The geothermal project in Mindoro will have a tariff of P6.58 per kWh for the 40-megawatt capacity, cheaper than the P14 per kWh tariff being paid currently to power up the island. So, while the start- up capital needed for exploration and building of actual plants at a glance seems too high, geothermal power can be competitive against fossil fuel alternatives.

Geothermal power plants have negligible fuel costs, too. Plants can be operated even at partial capacity without incurring higher operating costs given that there are no additional costs for the unused geothermal steam. The initial costs of opening of geothermal plants may be high, but it is offset by the stable and constant operating costs of the plants.

There are also other advantages of using geothermal power such as having the smallest carbon footprint among possible replacement for coal-fired plants, higher employment rates brought by the operations of the plants in local communities, higher earnings for the governments through royalties, taxes and property rentals, among others. In Mindoro, the non-power use of geothermal is now being studied seriously.

You may ask why geothermal power is underdeveloped in areas where they are abundant like in the US. The answer is simple: there are barriers to the development of this resource, particularly the high-cost and risk of developing geothermal energy. We will talk about geothermal energy development in the Philippines in my next post.

References:

http://geoenergy.org/reports/Economic%20Cost%20and%20Benfits_Publication_6_16.pdf

http://www.geothermal.org/PDFs/Values_of_Geothermal_Energy.pdf

http://cleantechnica.com/2015/03/02/electricity-cost-decreases-30-kenya-due-geothermal/

http://www.theage.com.au/national/education/deep-heat-geothermal-energy-an-earthly-power-to-be-reckoned-with-20150517-gh0tcr.html

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s